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INTRODUCTION 

The first year stage of program of the investigations includes the work with 

references, development of experimental set up, creation of necessary devices, and 

experiments at Tomsk airport. 

It is well known that data obtained from measurements of turbulence intensity, 

wind velocity profiles, and temperature at the altitudes of 10-15 km signify the zones 

of sharp changes near the tropopause. In this context it is essential to distinguish the 

foot print of the aircraft from characteristic of nondisturbed turbulence. So the work 

with references are still continue in the following directions: 

atmospheric characteristic at altitudes of 10 -15 km; 

turbulence characteristic at altitudes of 10 - 15 km; 

characteristic of aircraft engines, especially for B-747 and IL-86 planes, at altitudes 

of 10- 15 km; 

characteristic of aircraft foot prints under conditions of real flight. 

And direct measurements of turbulence and refraction are performing in a plane foot 

print at the ground level. 

We are assuming to construct the model of atmospheric turbulence on the high 

elevated paths along the long distance propagation. 

KEY WORDS: turbulence, wake vortex, aircraft, condensation trail, jet, vortex, 

dispersion and diffusion regimes, model. 



Part I. CONDENSATION TRAILS 

A brief review of the papers referring to gasdynamic, physical-chemical and optical properties of 

condensation trails behind high-altitude aircraft is done. 

1.1. Introduction 

In Europe, the USA and the world over (in Japan for example) the study of aviation emissions and 

its impact on the Atmosphere is of great interest during the last years [1.1-1.9]. The problem of 

contrail (condensation trail behind aircraft) formation and evolution is concerned with studying of 

atmosphere pollution, in particular with the problem of impact of aviation emission on the ozone 

layer [1.10]. 

ICAO (International Civil Aviation Organization) reports (1997) that in 1996 world-wide aviation 

transported 1.38xl09 passengers using 12980 commercial jet aircraft and 3180 turboprop aircraft 

[1.4]. World-wide air traffic increased by 5 to 6 % annually on overage from 1970 to 1993, and by 7 

to 8 % in the years 1994 to 1996. Global air traffic consumed aviation fuel at a rate of 130xl012 - 

180xl012 g/year 1992 to 1995. It is about 5 to 6% of all petrol products. About 65% of the fuel is 

consumed at cruise at altitudes between 10 and 13 km. The largest fraction is consumed by wide- 

body aircraft such as the B-747 on long distance flights. Most of the emissions occur between 30 

and 55°N over USA, Europe and the North Atlantic. Globally the fraction of fuel burnt above the 

tropopause has been estimated to be about 34%. Over the North Atlantic the stratospheric fraction 

of fuel consumption is about 50% in the annual mean. Aviation fuel consumption grew by about 3% 

annually over the last 2 decades. 

The cruise altitude of Super Sonic Transport (SST) of second generation would be 15 -18 km for 

Mach number 2 aircraft (such as Concorde) or 18-20 km for Mach 2,4 aircraft [1.2]. This range of 

altitudes is not far from: the peak of the ozone concentration (about 24 km); the altitudes of the 

Polar Stratospheric Clouds (PSC) with extend over the poles (about 20 km). 
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Our concern in this report is with two-dimensional laminar steady numerical solutions of the 
Navier-Stokes and continuity equations in open cavity geometries. Our ultimate objective is 
a nonparallel three-dimensional global linear instability analysis of these flows. Consequently, 
emphasis is presently placed on the accuracy of the obtained solutions, since the sensitivity of 
instability results on the details of the basic state is well known. The novelty of the spectral 
multidomain algorithm constructed for the basic flow calculations is that the iterations for 
satisfaction of solution continuity across domain interfaces and that for the nonlinearity of 
the governing system of equations are combined in a single step; order-of-magnitude savings in 
computing effort are thus materialised compared with the Dirichlet-Neumann approach in which 
the aforementioned two steps are nested within each other. 

Results are presented, validating the proposed algorithm on both Poisson's equation and 
well-known solutions of the incompressible equations of fluid flow motion. Subsequently steady 
laminar incompressible flow solutions in the open cavity are presented. The modifications ex- 
perienced by the steady flow pattern in the presence of a sizeable object inside the cavity is 
documented and conclusions concerning the global linear instability analysis of either prob- 
lem are drawn. Issues concerning compressible flow simulations for the problem in question are 
highlighted. 

Work which resulted from questions on the origin of numerical residuals in the course of 
steady-state numerical simulations, raised in the course of work performed on the present and 
Contract No. F61775-99 WE049, is submitted as an independent document with the request to 
have its suitability for a US Patent examined by the Air Force. 

f This material is based upon work supported by the European Office of Aerospace Research and Development, Air Force 
Office of Scientific Research, Air Force Research Laboratory, under Contract No. F61775-99-WE090. 
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2 V. Theofilis 

1. Introduction 

We report the results of our efforts to obtain spectrally accurate solutions pertaining to steady 
laminar flow in two-dimensional open cavities. This work is a pivotal step towards the tar- 
get of a global linear instability analysis of this flow. In such an analysis the entire flowfield 
obtained herein must be used as the variable coefficients (so-called basic flow) in the partial- 
differential-equation-based complex nonsymmetric generalised eigenvalue problem in which the 
Navier-Stokes, continuity and, in compressible flow, the energy equations may be recast. Conse- 
quently, the quality of the expected solutions of the eigenvalue problem is conditioned by that 
of the steady laminar basic states and it is tempting to devote sufficient computing power to 
ensure the recovery of high-quality basic flow results. However, current hardware technology 
limits the maximum number of discretisation nodes on which the respective eigenvalue prob- 
lem may be solved. This, in turn, results in the necessity for basic flow results to be obtained 
that are as accurate as possible on the limited number of discretisation points available. This 
latter requirement points at spectral methods as the natural choice for spatial discretisation. 
Conversely, relaxing the requirement of modest resolutions, one may obtain benchmark open 
cavity solutions at reasonable amounts of computing effort as one of the possible extensions of 
the present work. 

In building up the individual elements of the algorithm used for the solution of the prob- 
lem at hand we have followed a modular approach and present solutions to the issues arising 
in both incompressible and compressible flow. After presentation in § 2 of the spectral mul- 
tidomain algorithm utilised, an iterative multidomain Poisson solver which forms the core of 
our incompressible multidomain direct numerical simulation (DNS) approach is validated in § 3 
against two steady laminar flow problems and a solution recently presented in the Literature, 
obtained by an alternative spectral discretisation scheme. Our attention is subsequently focussed 
on the incompressible equations of motion and the issues of domain connectivity, boundary con- 
ditions and resolution necessary for results of predefined accuracy to be obtained are discussed 
in § 4 (a -c) by reference to well-known benchmark solutions of the equations of motion. Open 
cavity incompressible solutions at a variety of Reynolds number and aspect-ratio parameters are 
presented in § 4 (d). As a demonstrator of the potential of the multidomain algorithm proposed 
we recover solutions in a full-bay model of the open cavity; the strong qualitative differences of 
the flow pattern compared with the equivalent-sized empty open cavity is thus highlighted and 
conclusions regarding a possible subsequent global linear instability analysis of either problem 
are drawn. Issues of particular concern in compressible flow are discussed in § 5. While we have 
solved the initial-condition problem for compressible simulations, no compressible open-cavity 
solutions have been obtained so far; these will be presented in due course, after answers to the 
boundary-condition related issues raised herein have been addressed in a satisfactory manner. 
Concluding remarks and an outline of the several potential extensions of the present work are 
presented in § 6. 

2.  A spectral multidomain approach 

(a) Spatial decomposition 

The choice of spectral methods has been made on the grounds of their superiority over finite- 
difference or finite-volume methods in recovering solutions of optimal accuracy at modest res- 
olutions. The nature of the domain in which we are interested renders single-domain spectral 
calculations impractical. Within the framework of spectrally-accurate solutions two options for 
the spatial discretisation of an open cavity are a spectral multidomain (Demaret and Deville 
1991; Quarteroni 1991) or a spectral element (Patera 1984) domain decomposition. The first 
approach is well-suited for domains which may be decomposed in regular rectangular subdo- 
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Spectral multidomain for laminar flows in 2D open cavities 3 

mains; the second approach may either be formulated in rectangular subdomains or based on 
space triangulation and is thus more flexible than spectral multidomain in the reconstruction of 
arbitrarily-shaped domains, albeit in the presence of an efficient triangulation algorithm. Given 
the regularity of the geometry of the open cavity we use here spectral multidomain spatial de- 
composition based on rectangular subdomains. For consistency in what follows we refer to the 
N(orth), E(ast), S(outh) and W(est) boundaries and enumerate domains in a clockwise manner. 

Rectangular open-cavity type of two-dimensional physical domains may be reconstructed by 
means of the 24 — 1 rectangular subdomains whose sides result from permutations of open 
and closed boundaries less that subdomain whose four sides correspond to solid walls. These 
subdomains are depicted in Figure 1 and may be classified into four types, equal to the number 
of rows in Figure 1, according to the number and location of the open/closed sides in each 
domain. Using clockwise notation we start from the N boundary in each domain and denote a 
solid boundary by '1' and an open boundary by '0'. The subdomain whose four sides are open 
is thus denoted by 0000 and we call it a type A domain. The family of subdomains having three 
open sides has four members, 1000, 0100, 0010 and 0001 and is denoted as type B. The six 
subdomains having two open and two closed sides are 1100, 0110, 0011, 1001, 0101 and 1010 
and are denoted as type C subdomains. Finally, the family of subdomains having three closed 
sides and denoted as type D has four members, 1101, 1110, 0111 and 1011. Using this notation a 
minimum of four subdomains, one of type A, two of type B (0010) and one of type D (0111) may 
be used to reconstruct a simple open cavity geometry, while eight subdomains may minimally 
be used to decompose space in the case of an open cavity including a protrusion, one of type A, 
five of type B and two of type D, as depicted in Figure 2. 

(6) Physical boundary conditions for the incompressible equations of motion 

Before addressing the issue of connectivity of the domains exposed in § 2 (a) we discuss briefly 
the system of equations solved in incompressible flow in order for the issue of physical boundary 
conditions to be addressed and the distinction to be made between physical boundary conditions 
and numerical compatibility conditions necessary to close the system of equations in the present 
multidomain framework. If incompressible solutions are sought, the system composed of the 
relation between streamfunction i/> and vorticity £ and the steady vorticity transport equation 
is solved, 

V2V + C = 0, (2.1) 

vV2{ + {i>ytx-i>x{y}=0, (2.2) 

in which v denotes the kinematic viscosity of the fluid. The choice of the steady, as opposed 
to the unsteady version of the equations of motion, was made so that global two-dimensional 
amplified linear instabilities, potentially developing upon the sought laminar basic flow solutions, 
are not allowed to manifest themselves in the dynamics of a DNS which aims at recovery of 
steady-state laminar basic states (Theofilis 1999). Another point worthy of mention regarding 
the choice of the vorticity-transport equation as opposed to the primitive variable formulation 
concerns the savings expected to be made when solving two as opposed to three equations using 
potentially long expensive iterative procedures for the satisfaction of solution continuity across 
interfaces. From an academic point of view it is interesting to investigate spectral multidomain 
algorithms in the context of the vorticity transport equation, since multidomain solutions are 
typically obtained using primitive variables (Quarteroni 1991). 

The physical boundary conditions associated with this system on solid walls are no-slip and no- 
penetration. In terms of the velocity components along the spatial directions x and y, respectively 
denoted by ü and v, both boundary conditions concern the streamfunction 
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4 V. Theofilis 

ü = tpy = 0,     and    v = — ^x = 0. (2.3) 

Substantial effort has been put into translating these physical boundary conditions on bound- 
ary conditions for vorticity in the context of finite-difference calculations (e.g. E and Liu 1996). 
In the present calculations on solid boundaries we impose both physical boundary conditions 
(2.3) on ip and derive boundary conditions on ( using (2.1). 

Physical boundary conditions are also given at open boundaries. In the case of the open 
cavity defined in x £ [XQ, X^] X y G [yo: oo) one may distinguish between three types of physical 
boundary conditions, those imposed at the inflow boundary x = xo, boundary conditions on 
the computational boundary y = y^ which models the physical boundary y —¥ oo and, finally, 
boundary conditions at the outflow boundary x = JEoo. The inflow boundary conditions for the 
present problem are given in terms of the streamfunction and the vorticity of flow on a flat 
plate at a given Reynolds number ReXo. At the N boundary of all relevant subdomains, y = y<x>, 
flow is driven by ü = 1 and v = 0 is imposed; Dirichlet and Neumann boundary conditions on 
ip are used to impose these physical boundary conditions. At the outflow boundary x = Zoo 
information is extrapolated from the interior of the computational domain on the E boundary 
of the subdomain whose E side is at x = a;«,. We will return to these points in in § 4 (a-c) 
and (d). 

(c)  Connectivity of the domains and numerical compatibility conditions 

We focus the discussion on the open cavity geometry presented in the upper part of Figure 2, 
in which Roman numbering of the subdomains is used. We indicate interfaces by their position 
with respect to the domain followed by the number of the domain in brackets. The interfaces 
E(ii)/W(i), E(i)/W(iii) and S(i)/N(iv) between the non-overlapping domains (ü)/(i), (i)/(iii) 
and (i)/(iv), respectively, are artificially generated internal boundaries resulting from the spatial 
decomposition. A straightforward iterative algorithm is used to solve the governing equations in 
this geometry as follows. 

The physical boundary conditions on the N, S and W boundaries of domain (ii) are comple- 
mented by arbitrarily chosen Dirichlet data on E(ii), the governing equations are solved in this 
subdomain and Neumann data on the interface E(ii)/W(i) are generated. The same approach is 
followed on domain (iii) in which (2.1-2.2) are solved subject to the physical boundary conditions 
on N, E, and S of this domain and arbitrary Dirichlet boundary values on W(iii) in order for 
Neumann boundary data to be generated on the interface E(i)/W(iii). Analogously, the (no-slip) 
physical boundary conditions on E, S, and W of subdomain (iv) are complemented by arbitrary 
Dirichlet data on N(iv), the governing equations are solved and Neumann boundary data on 
the interface S(i)/N(iv) are generated. The system (2.1-2.2) may now be solved in subdomain 
(i) subject to the physical boundary condition on N(i) and the numerical Neumann compatibil- 
ity conditions generated from the solutions in the adjacent subdomains. The solution delivers 
Dirichlet data on E(i), S(i) and W(i), which are passed on to the adjacent subdomains (iii), (iv) 
and (ii) using relaxation according to 

q(n) = uq(n) + (1 _ w)g(n-l) (2.4) 

where (n — 1) and (n) denote old and new iteration levels and w is an 0(1) relaxation param- 
eter. The process is iterated until convergence; at convergence C1 continuity is attained on all 
interfaces. The algorithm has been found to converge rapidly in both the form discussed and also 
when Neumann data are chosen initially in subdomains (ii), (iii) and (iv) and Dirichlet values 
are used for the subsequent iteration in subdomain (i). 

The proposed algorithm is the streamfunction/vorticity-transport analogon of the so-called 
Dirichlet-Neumann iterative scheme presented in the context of primitive-variables discretisation 
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Spectral multidomain for laminar flows in 2D open cavities 5 

of the equations of motion by Quarteroni (1991). In the case of two subdomains fii and O2 with 
a common interface V one solves the independent problems 

V24n) + Ci"} = 0, in fii 

^^(n-l).   C(«)=M(n-l) on r 

(2.5) 

V24n) + d"} = 0, in ft2 
uV*tM=&\ infi2 

d^/dnr = d^/dnr, d([n)/dnr = dc£]/dnr   on T 

and updates the Dirichlet data on the interface according to 

AW   =  ü# + (l-«)*(n_1) 

/>)   =  wC^ + Cl-w)^"-15 

Depending on whether one solves the steady version of the equations of motion, as the case is 
here, or whether one solves the time-accurate problem the forcing functions are defined either 
by (2.2), 

(2.6) 

(n) 

(n) 
52 

= -MM5-*ö$} = 0. (2.7) 
= -{«-^(g)-0 (2.8) 

or by (2.7-2.8) modified by the terms arising from a semi-implicit time-discretisation (Canuto 
et al. 1987). In the latter case the iterative procedure for the satisfaction of solution continuity 
across domain interfaces is nested into that for the time-stepping algorithm. The key difference 
between the Dirichlet-Neumann approach for the steady equations of motion and that for a 
time-accurate solution is that in the former case we do not distinguish between the iteration 
necessary for the satisfaction of solution continuity across domain interfaces and that which 
must be performed for the nonlinearity of the vorticity-transport equation. 

Refinement of spatial discretisation at certain interesting parts of the flowfield (f.e. solid-wall 
junctions) is attained in either of two ways. First, retaining the spatial decomposition one refines 
resolution in the subdomains adjacent to the physical location of interest. Second, the subdo- 
mains in which refinement is required may be further decomposed into smaller subdomains, 
generating additional interfaces within the original subdomain and retaining the principle of 
utilising the physical boundary conditions in order to generate numerical compatibility condi- 
tions for the newly-generated interfaces. For example subdomain (iv) of Figure 2 (upper) may 
be decomposed into six subdomains, as shown in Figure 3. The solution here starts in a first 
step of a 'forward' iteration by assuming Dirichlet values on the NUW and NUE boundaries of 
the type C subdomains (c) and (e), respectively, solving the system of governing equations in (c) 
and (e) and generating Neumann data for the type B subdomains (b), (d) and (f). In a second 
step, the physical boundary conditions on the type B subdomains are complemented by the 
newly generated information on their S, E/W and S boundaries, respectively, and by arbitrary 
Dirichlet data values on N(b), W(b), N(d), N(f) and E(f) and the governing equations are solved. 
In a final step, the newly generated Neumann data on E(a), S(a) and W(a) are complemented 
by arbitrary Dirichlet data on N(a) and (2.1-2.2) are solved in this domain. This generates a 
new estimate of the solution derivative along the entire N(iv) boundary which may be used to 
solve for domain (i) in the global solution algorithm. This produces new function values along 
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6 V. Theofilis 

N(f)UN(a)UN(b) and the flow of information may be reversed in a 'backward' local iteration 
within the original domain (iv). 

3. Validation of the multidomain approach on the Poisson equation 

At the heart of the numerical solution for (2.1-2.2) lies a spectrally-accurate Poisson solver. Be- 
fore entering the details of the numerical solution of the Navier-Stokes and continuity equations 
we validate the procedure of § 2 (c) on the Poisson problem 

\/2iP = F(x,y) (3.1) 

for three different cases of integration domain, forcing function and associated boundary con- 
ditions. 

(a) Poisson's equation in a rectangular duct 

The first is calculation of the steady laminar flow in a rectangular duct presented by Tatsumi 
and Yoshimura (1990) in which the forcing is provided by the constant, pressure-gradient related 
term F(x, y) = —2. The rectangular integration domain in this case is defined by x G [—A, A] x 
y £ [—1,1], where A is the duct aspect ratio. The boundaries in this example are taken to 
be solid walls, on which the viscous boundary conditions are applied. Space is discretised by 

the union of three subdomains, the 1011 D-type subdomain Ix G  [—A,aj£,] x y G [-1,1] j, 

the 1010 C-type subdomain Ix G  [XL,XR] X y G  [—1,1]} and the 1110 D-type subdomain 

\x G [x#,+A] x y G [—1,1]}. The interfaces are chosen at XL — —0.5A and XR = 0.25A and 

all subdomains are discretised using Legendre Gauss-Lobatto collocation points to resolve the 
x— and y—spatial directions by Nx and Ny points, respectively. Results for the streamfunction 
at {XL,0), (0,0) and {XR,0) and its first derivative ipx at {XL,0) and {XR,0) as function of 
resolution is shown in Table 1 for two aspect ratios, A = 3 and 4. Note that the magnitude 
of tpy{xL,0),ipx(0,0),^(0,0) and ipy(xR,0) is < 10~14. Converged results which agree in all 
significant digits with those presented by Tatsumi & Yoshimura (1990) may be obtained using 
16 collocation points per spatial direction in each subdomain and w = 0.5. Our result for ip in 
the union of the three subdomains is presented in the form of eleven contours from 0 to max^t 
in Figure 4, where the absence of any sign of discontinuity at the interfaces is visible. 

The efficiency of the present algorithm derives from two facts; firstly, a spectrally-accurate 
solution is obtained in this problem by solving linear systems defined by dense matrices whose 
leading-dimension is Nx x Ny as opposed to 3 x Nx x Ny that would have been necessary 
for a single-domain calculation at the same resolution. Second, the small number of iterations 
necessary for \tp(n+1) — ip^\/\^n+1^\ < 10-14, also displayed in Table 1, justifies the use of an 
iterative scheme on the three small rather than a direct scheme on a single large problem. In 
the latter problem one order of magnitude larger memory and two orders of magnitude longer 
runtime, compared with those for solution in a single subdomain, would have been necessary 
using direct inversion. Representative results for the CPU time necessary for convergence using 
a single PII 300MHz processor are also shown in Table 1. Shown are two numbers, one corre- 
sponding to the total cost of the LU-factorisation of the three implicit matrices corresponding 
to the three subdomains and the iteration itself and a second showing the latter cost alone. It is 
clear that most of the time is spent in the one-off factorisation, the results of which are stored 
and used during the iteration. The iterative approach itself is parallelisable, which may reduce 
the cost of the iteration process further. 

t Contour level 0 is the wall itself, while a single point in the centre of the domain corresponds to the contour ip = max(V>) 
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Spectral multidomain for laminar flows in 2D open cavities 7 

(b) Poisson's equation in a grooved-channel geometry 

The second validation case for the algorithm of § 2 (c) is the Poisson problem- (3.1) subject 
to the same forcing function and boundary conditions but solved in the domain of the open 
cavity. Aside from testing the performance of the algorithm on the actual domain in which the 
flow solutions are to be obtained, the objective here is firstly to test the symmetries present 
in the solution if a symmetric integration domain is chosen and secondly to assess the level 
of discretisation necessary in order for solutions to converge within predefined tolerance in a 
domain containing geometric singularities. Space is discretised by the union of the three D-type 

subdomains {lOll : x G [-1,-0.75] x y G [0,1]}, {Olli : x G [-0.5,0.5] x y G [-1,0]}, 

IlllO : x G [0.5,1] x y G [0,1]}, with the C-type subdomain jlOlO : x G [-0.75, -0.5] x y G 

[0,1]}, and the B-type subdomain 11000 :  x G [-0.5,0.5] x y G [0,1]}. Of particular interest is 

the performance of the algorithm in the presence of the discontinuities at (xL,yL,) = (—0.5,0) 
and (xR,yR) = (0.5,0). Results for the streamfunction ip and its first derivatives along the 
spatial coordinates ipx and ipy are shown in Figures 5-7; the symmetry of the solution about the 
geometrical line of symmetry x = 0 is evident. Results for ip, ipx and tpy at six #—locations along 
y = 0.5 as a function of resolution, which was kept the same in the five subdomains, are shown in 
Table 2. The most striking observation is that despite the presence of the physical discontinuities 
in the integration domain convergence of the spectral method is exponential, showing reduction 
of residuals by an order of magnitude when doubling the number of collocation points in each 
spatial direction. A resolution of 16 collocation points per spatial direction in each subdomain is 
sufficient to produce results whose relative discrepancy from the result at the highest resolution 
is less than 0.05%. On the other hand, unlike the case of the rectangular duct, the presence 
of corner points in this problem results in at least 64 collocation nodes being necessary for 
residuals less than 10~5 to be obtained. The same message is conveyed by the small but nonzero 
values of ipx on the line of symmetry x = 0 where the latter quantity assumes values of O(10 ) 
at the highest resolution and also by the difference between function or derivative values at 
a point and its mirror image with respect to the geometric line of symmetry x = 0. Such 
discrepancies in a basic flow are well within the bounds of acceptability for accurate linear 
instability analysis results to be obtained. Our conclusion here is that the spectral multidomain 
algorithm of § 2 (a — c) is able to handle the target grooved channel geometry, albeit at the 
cost of rather large number of discretisation points; we will return to this point in the context of 
simulations of the Navier-Stokes and continuity equations. Given the well-established property 
of a spectral method to deliver results of comparable accuracy with those of a second-order 
accurate finite-difference or finite-volume method at approximately an order of magnitude less 
number of discretisation points per spatial direction, the present results may be used as guidance 
for the number of discretisation points necessary for a second-order accurate method to deliver 
results in the problem in question of accuracy comparable with that of the present spectral 
scheme. 

(c) Poisson's equation in a backward-facing step geometry 

The final validation case for the multidomain algorithm before turning to the equations of 
motion is that discussed by Black (1997). The integration domain here is the classic backward- 
facing step geometry and the novelty compared with the previous two validation cases is the open 
domain boundary conditions. The integration domain is decomposed into two B-type subdomains 

JOOIO :   x G [-7T.0] x y G [TT/2,71-]} and JOOOI :   x G [0,2vr] x y G [0,TT/2]} and an A-type 

subdomain JOOOO : x G [0,2iv] x y G [7r/2, TC]\. The forcing function in (3.1) is a constant equal 

to unity and the boundary conditions are 
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ip{x,y) 

7T,27r] 7T 0 

2TT [0,7T] V»x = o 

[0,2TT] 0 (TT/2)
3
/6 

0 [0.7T/2]   ■ (vr/2)3/6 

-*,0] TT/2 (TT/2)
3
/6 

—7T [7r/2,7r] (TT - y)3(y/3 - -7T/12) 

(3.2) 

(3-3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Only graphical results are presented by Black (1997); nevertheless, to the degree that results 
may be compared visually, the agreement seen between hers and our result for %/>, to be found in 
Figure 8, is satisfactory. Additionally in this figure we present the first derivatives of the solution 
in none of which evidence of discontinuity of the solution at interfaces can be found. The function 
and first derivative values at the midpoints of the interfaces, (x, y) = (n, 0) and (x, y) = (0,37r/4), 
may be found in Table 3. Overall the solution converges faster on the former, compared with 
the latter point. Both converge exponentially, although a number of collocation points higher 
than 64 per spatial direction is found to be necessary if convergence beyond the fourth decimal 
place is desired. With the spectral multidomain approach validated on the Poisson problem in 
nontrivial geometries, we now turn our attention to the solution of the system (2.1-2.2). 

4. The incompressible equations of motion in two spatial dimensions 

As it has been stressed already, in view of the global linear instability analysis which will 
ultimately follow the present work, restrictions are placed upon the maximum total number 
of discretisation points that can be used to solve for the steady laminar basic flow. Emphasis 
is consequently placed here on assessing the minimum number of collocation points by which 
converged steady laminar solutions may be obtained within the framework of a spectral mul- 
tidomain discretisation. Issues which have to be tackled for the solution of the system governing 
fluid flow motion, additionally to those discussed above, are the following. First, the extension 
of the iterative algorithm for the satisfaction of solution continuity across domain interfaces to 
systems of equations must be validated. Second, the points raised regarding the physical bound- 
ary conditions as opposed to the numerical compatibility conditions discussed in § 2 (6 — c) 
deserve elaboration in the context of fluid flow simulations. Third, physical boundary condi- 
tions pertinent to open/solid boundaries must be discussed in the present spectral multidomain 
framework. Finally, the nonlinearity of the system of the governing equations introduces in 
principle an additional iteration besides that necessary for the satisfaction of continuity of the 
solution across subdomain boundaries. The relative performance of our algorithm, in which this 
additional iteration is circumvented, against an algorithm which uses an outer iteration for the 
nonlinearity (and potentially the time-advancement) and a nested inner iteration based on the 
Dirichlet-Neumann algorithm for the satisfaction of solution continuity across interfaces must 
be assessed. These issues are addressed below, where we expose the properties of the proposed 
algorithm by discussion of its performance on analytically and numerically well-known fluid 
flow examples. Steady laminar flows in a plane channel, the lid-driven cavity and the Blasius 
boundary layer are discussed before solutions to the open cavity problem are presented. 
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(a) Plane Poiseuille flow 

The first building block of the algorithm which we wish to validate is our approach to the 
boundary conditions imposed at free-boundaries. To this end a single-domain calculation with 
one free-boundary, that at outflow, is performed. Plane Poiseuille flow (PPF) is an ideal test 
case for this problem since its analytical results serve both as inflow boundary conditions and as 
test for the returned numerical solution in the entire domain. In view of the (ip, £) formulation 
used herein one preprocessing step is necessary, that of provision of an analytical functional 
form.for ip. We take a single domain in which x G [—2, 3] denotes the arbitrarily chosen extent 
of the downstream spatial direction and y € [—1,1] is taken to be along the wall-normal spatial 
direction. Fortuitously in this flow the physical domain of interest and the standard Chebyshev 
Gauss-Lobatto grids (Canuto et al. 1987) coincide and no mapping of the computational coor- 
dinate is necessary in the wall-normal direction. It is also worthy of mention is that the spatial 
homogeneity of this problem is not exploited by use of a Fourier decomposition of flow quantities 
along the streamwise spatial direction but, rather, a Jacobi polynomial expansion which permits 
recovery of arbitrary solutions is used. It is left to the dynamics of the flow to select the correct 
(homogeneous) solution. 

Assuming a downstream pressure gradient px = —2/Re analytically results in the classic 
parabolic profile for ü(x,y) = 1 — y2, while v = 0. The definition of ü = ipy may be integrated 
once to provide 

V>(z, y) = 3 + y - ^y\ (4.i) 

where the choice ip(x,y = —1) = 0 has been made. The flow vorticity is also known analyti- 
cally, 

((x,y)=2y. (4.2) 

The algorithm solves the Poisson problem (2.1) for ip, given a delayed £ field subject to the 
boundary conditions of Table 4. At inflow Dirichlet boundary conditions for ip, provided by eq. 
(4.1), complement the boundary condition v = —ipx = 0 while at outflow the prescription of 
Briley (1971) is used, which was presented as a boundary-layer approximation. It is interesting 
to assess its performance in the context of the present low-Reynolds number Navier-Stokes 
spectral multidomain simulations. On solid walls the viscous boundary conditions are imposed 
on ip either directly for u (ipy = 0) or indirectly for v by specifying a constant ip value obtained 
by (4.1). With the solution of V known at the new iteration level (2,2) is also written as a Poisson 
problem in which the nonlinear right-hand-side forcing may be constructed using current-level 
information on ip and ( data which are delayed by one iteration; the Poisson problem for (, may 
then be solved subject to the compatibility conditions for £ also shown in Table 4. Note that only 
one outflow boundary condition is required on this quantity, the other being imposed on ip at 
this boundary and all physically available information being incorporated in the streamfunction 
boundary conditions. A variant of the present algorithm would solve a coupled problem for ip and 
£ in which information on the forcing term alone would be delayed by one iteration. However, 
both the accuracy and the convergence rate of results of single domain calculations are such 
that the higher cost of a coupled solution is not justified. 

Single-domain calculation results converge quickly to the parabolic profile for the stream- 
wise velocity component and the linear dependence of vorticity on the wall-normal coordinate 
throughout the entire domain. Most significantly, this result has been found to be independent 
of the arbitrary extent of the integration domain in the streamwise direction x and the resolution 
of the wall-normal direction y, provided that the latter exceeds 8 collocation points. The rate 
at which the analytical results are obtained is a function of the Reynolds number, with lower 
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.Re-values resulting in increasing diagonal dominance of the matrix discretising the Laplacian 
operator in (2.2) and quicker convergence compared with higher Reynolds number results. The 
most significant rinding of this test-case, though, concerns the boundary conditions treatment. 
Use of equation (2.1) was found to deliver machine-precision agreement with the analytically 
known inflow boundary condition for (; results obtained on this problem provide justification 
for use of Briley's outflow boundary treatment in all subsequent simulations. 

The same problem is tackled next using our multidomain approach in which space is discretised 
by two 1010 C-type subdomains 

{x € [-3,0] x y € [-1,1]} U {x € [0,2] x y G [-1,1]}. 

The boundary conditions of Table 4 are used at the N, S and W boundaries of the first and 
the N, E and S boundary of the second subdomain, respectively. At the interface compatibility 
conditions ensuring continuity oitp and its first derivative close the Poisson problems to be solved 
for the streamfunction, while compatibility conditions based on (2.1) are used for C in both 
subdomains. Again, the analytical results are obtained to within machine-precision. Iteration 
history results for the streamfunction, the streamwise velocity component and the (constant 
throughout the integration domain) wall-normal derivative of the flow vorticity against the 
time-like variable r, related with the number of iterations performed N and the relaxation 
parameter u> through r = uN, are presented in Figure 9; ü and £ are presented in Figure 10. As 
has been mentioned, results were obtained by iteratively exchanging function and first-derivative 
information between domains at interfaces. The interesting observation here is that the approach 
of absorbing the iteration for the nonlinearity within that for satisfaction of solution continuity 
at interface boundaries saves an order of magnitude of computing effort in comparison with an 
approach which uses nested iterations for solution continuity within those for the nonlinearity 
of the governing equations. 

(6)   The lid-driven cavity 

The next test case is the classic lid-driven cavity flow. This flow serves as a testbed for new 
numerical algorithms and has extensively been simulated in the past in its own right and on 
account of the analogies between the lid-driven and the problem of interest here, that of flow 
in an open cavity, in which the shear-layer at the lip of the open cavity acts as the lid driving 
flow inside the cavity. Recently, Theofilis (2000) has demonstrated excellent agreement between 
the frequency of the most unstable global linear mode calculated by the novel global linear 
instability analysis technique and that measured in a careful series of experiments (Aidun et 
al. 1991; Benson and Aidun 1992). One of the objectives of the present study is to compare 
the steady laminar basic flow patterns in the lid-driven and the open cavity in order to draw 
indirect conclusions upon the expected global linear instability behaviour of the open cavity 
problem before embarking upon the computationally intensive global linear instability analysis 
in the open cavity. 

The spectral multidomain algorithm discussed is applied to the lid-driven cavity problem, 
discretising space using the union of a 1011 and a 1110 D-type domain, 

(i£ [0,0.5] xy€ [0,1]} u{xE [0.5,1] xy€[0,l]}. 

Simulations were performed at several Reynolds numbers and correspondingly increasing res- 
olutions; the boundary conditions imposed are shown in Table 5. Excellent agreement with 
the benchmark results of Schreiber and Keller (1983) has been obtained. Interestingly, these 
authors provide vortex core position and strength results as a converging series of Richardson- 
extrapolated data. The maximum relative discrepancy of our calculations at Re = 4000 from 
their results is < 0.3%. Such an agreement could only be obtained by using in excess of 32 spec- 
tral collocation points per spatial'direction on account of two factors. First, the boundary layers 
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forming in the vicinity of all four solid surfaces and in particular in the salient corners need to 
be adequately resolved. Second, the singularity of the boundary conditions at the lid endpoints 
requires placement of sufficient gridpoints in the vicinity of (x, y) — (0,1) and (1,1). Plots of the 
streamfunction, vorticity and velocity components at Re = 100, obtained using 482 Chebyshev 
collocation points per subdomain can be seen in Figure 11. Despite the satisfactory agreement 
obtained between benchmark results and the present calculations, it has been observed in this 
nontrivial solution of the equations of fluid motion that a relatively large number of collocation 
points in each subdomain is required in order for convergence of the algorithm to be achieved. 

(c)  The Blasius boundary-layer 

The Blasius boundary-layer flow is recovered next by application of the spectral multidomain 
technique proposed. This flow is interesting in a twofold manner in the context of the open- 
cavity calculations. First, from a numerical point of view the issue of boundary conditions in an 
open system in conjunction with the proposed iterative spectral multidomain algorithm must 
be addressed. Second, the flat-plate boundary layer constitutes the flow upstream of the open- 
cavity solutions to be discussed shortly and as such we wish to ensure that it is well captured in 
its own right. With hindsight, the results obtained in this section have highlighted the potential 
sources of errors particular to open systems, introduced in the solution by application of the 
multidomain algorithm to this type of flows. 

We have solved the equations of motion on rectangular domains 

jz G [xin,xout] x y G [0,yoo]} 

with xout chosen to be located subcritically with respect to Tollmien-Schlichting (TS) instability 
(Schlichting 1979). Failure to satisfy this condition is expected to result in amplification of 
two-dimensional small-amplitude wave-like disturbances which, depending on the length of the 
integration domain, will manifest themselves in the DNS in the inability to obtain a converged 
steady-state (Theofilis 1999). Our intention in terms of the open-cavity solutions to follow is 
to ensure that the only source of unsteadiness originates from linear instability of the cavity 
itself and not from additional instabilities of different physical origin. To this end we chose 
üoc = 1, xin = 0.5, xout = xin+lQQ6*n and v = 1.7x 10-5 in SI units. This results in (dimensional) 
displacement-thicknesses of the boundary layer 8*in « 0.005 and <5*ut « 0.007 at inflow and 
outflow, respectively; the corresponding Reynolds numbers are Re{n « 295 and Reout « 417 
while the well-known critical Reynolds number for TS-amplification is Re£ « 520 (Tollmien 
1929). The wall-normal direction was resolved by mapping the Chebyshev Gauss-Lobatto points 
77 G [—1,1] onto the physical coordinate y using 

y = iA^r- (4-3) l + S + T] 

Here / = yc(j/oo - yo)/{yoo - 2/o - 2yc), s = 21 /{y^ - y0), half of the total number of collocation 
points in the wall-normal direction are placed between the wall yo = 0 and yc = (2/00 — yo)M 
the parameter d takes values between 3 and 5; the outflow boundary is placed at y^, « 0.06. 

After obtaining converged solutions of the governing equations using single-domain computa- 
tions and as few as 16 collocation points per spatial direction, the system (2.1-2.2) was solved 
in two B-type 0010 subdomains, 

|x G [xin,xc] x y G [0,yoo]} U ja; G [xc,xout] x y G [0,yoo]} 

subject to the following boundary conditions. At inflow the Blasius solution at Xin was calculated 
using a Newton-Kantorowitz spectral iterative approach (Boyd 1989) on the same wall-normal 
grid as the subsequent Navier-Stokes calculations were performed, in order to avoid the intro- 
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auction of interpolation-related error when transferring the boundary-layer data onto the DNS 
grid. The profiles obtained were then used as inflow boundary conditions for ip and (. At the 
far-field we imposed ipy = 1 and £ = 0. At the wall the usual viscous boundary conditions 
ip = ip = 0 were imposed on ip and none on C- At the outflow boundary a;oui the conditions 
ipxx — 0 and (xx = 0, already validated on the plane Poiseuille flow, were imposed. Continuity 
of the solution and its derivatives was ensured at the interface boundary, the latter placed at 
xc = Xin + {xout — Xjn)/2.5. In a manner analogous with the calculations in the lid-driven cav- 
ity, the resolution of the boundary layer requires an adequate number of points resolving the 
boundary layer. On the other hand, it is interesting in the context of the present calculations 
to obtain solutions within a predefined low tolerance on as small a total number of points as 
possible; this requirement was elemental in the decision to use spectral methods for the dis- 
cretisation of the governing equations. It is well-known from single-domain calculations that at 
high resolutions these methods suffer from severe CFL-related time-step limitations when time- 
accurate solutions are obtained, and very small relaxation parameters in the context of iterative 
solution approaches. As a matter of fact, the largest time-step permitted scales with the fourth 
power of the smallest grid-spacing (Canuto et al. 1987) while an analogous situation pertains to 
the relaxation parameter. Consequently, very high resolution runs are quite expensive to obtain 
in general. The cost is aggravated in the context of the present multi-domain calculations on 
account of the iteration process necessary for continuity of the solution at the interfaces to be 
ensured. 

With these considerations in mind, solutions on grids comprising 122, 162, 322 and 482 col- 
location points in each subdomain were obtained. In Figure 12 we present a local convergence 
history of the ip and £ solutions obtained on the coarsest grid at the midpoint of the first inte- 
gration subdomain against the time-like variable r; monotonic convergence of both quantities is 
demonstrated. Also shown is the collapsing of the calculated solution onto the Blasius profile. 
Three stations are shown, firstly x = rcjn, where the Blasius solution is imposed as an inflow 
boundary condition for the first domain, secondly the calculated solution at the domain inter- 
face x = xc and thirdly the calculated solution at x = xout- It is worthy of mention that the 
collapsing of the solutions obtained is quite adequate even at this coarse resolution. 

However, an interesting situation arose on grid refinement of the coarsest resolution results. 
While the 122 calculations converged monotonically, prior to convergence the 162 results exhib- 
ited an oscillatory behaviour in the downstream subdomain, the amplitude of which increased 
with the number of iterations until divergence of the simulation; the same behaviour has also 
been observed as a result of too high a relaxation parameter w, in which case instability appears 
without convergence having been approached. A typical result of the in-phase oscillations of 
ip and its derivatives in the latter case is shown in Figure 13. Several potential causes of this 
behaviour, which is absent in the context of single-domain calculations using the same domain 
extent and the same resolution, were examined and extensive experimentation was performed 
at a given extent of the integration domain with different grid-refinement, iteration parameters 
and outflow boundary conditions alternative to those used in the examples presented so far. As 
a matter of fact a modest increase of the resolution and decrease of the associated OJ had no 
influence neither on the pattern seen in Figure 13 nor on its frequency, leading us to examine the 
possibility of the instability being of physical origin. Although in the parameter range examined 
Tollmien-Schlichting instability gives rise to decaying waves alone, if TS waves were present in 
the flow they would manifest themselves at conditions of linearity, i.e. near convergence of the 
basic flow to a steady state, in line with the observations made. On the other hand, the absence 
of instability in single-domain calculations points at the origin of the oscillations being of nu- 
merical nature, associated with the existence of an interface in the integration domain. Further, 
it may be conjectured that the practically absent dissipation of a spectral scheme results in 
catastrophic amplification of the numerically generated instability. Such a behaviour might have 

Contract No. F61775-99-WE090 



Spectral multidomain for laminar flows in 2D open cavities 13 

been absent if a spatial discretisation scheme with inherent dissipation higher than that of the 
spectral method were used. 

We first eliminate the possibility of the outflow boundary conditions being responsible for 
the phenomenon observed. To this end, we artificially stabilise the outflow region by using a 
buffer-domain approach, in which the convective terms of the governing equations are smoothly 
reduced to zero. This technique has been used successfully by a number of investigators dealing 
with spatial direct numerical simulation of transitional and turbulent flows (Spalart 1988, Rist 
et al. 1996). The function used to achieve this purpose in the context of the present simulations 
is 

\{x) = 0.5 [l + tanh ^-^], (4.4) 

where s = xc + a(xout — xc) with a determining the location s G [xc, xout] around which the 
hyperbolic tangent function is centred. The parameter ß determines the slope in the hyperbolic 
tangent function and ensures that a given streamwise grid resolves \{x) well. The governing 
equations are then modified, replacing (2.2) by 

uV2C + A(a;){^Cx - V^} = 0, (4.5) 

which delivers unphysical solutions for (ip, C) in the part x G [s, xout] of the second subdomain 
in favour of stable solutions upstream of x = s. While one wishes to have s -¥ xout and a steep 
slope of the hyperbolic tangent function, there are limitations to the extend that the buffer- 
domain approach may be used such that it fulfills its purpose to damp outflow oscillations and 
at the same time is not too wasteful in terms of the collocation points devoted to resolving A 
as opposed to solving the governing equations. Several experiments performed using this tech- 
nique have improved the quality of the transient solutions compared with the untreated outflow 
boundary. However, at modest resolutions the buffer treatment failed to deliver a satisfactory 
solution of the issue of numerical instability in the downstream subdomain near convergence of 
the simulation. 

We have established three possible remedies of the numerical instability problem. The first, 
least satisfactory, solution is use of extremely small a; values. At the present conditions and a 
resolution of 162 collocation points in each of two subdomains a value LJ — 10~6 appears to 
alleviate the problem. While no discontinuity of the solution at the domain interface may be 
found after a large number of iterations, traces of the instability in question may still be found 
in the solution, as seen in Figure 14. The solution shown is converged to a relative discrepancy 
between successive iterates of < 10~9. However, owing to the cost of the iterative approach with 
such a small value of w further iterations aiming at reducing this tolerance value to machine- 
accuracy levels were not performed and it remains unclear whether the instability in question 
will ultimately manifest itself in the solution. The second means found to improve the behaviour 
of the solution is shifting the inflow location of the integration domain xin upstream of the 
location X{n = 0.5. One may choose to retain the outflow location xout in its original position 
or shift it to xout < xout, effectively solving a different problem. In the first case the instability 
appears and eventually destroys the simulation, while in the second case converged solutions 
may be obtained after a small number of iterations which depends on the location of the new 
outflow boundary xout. Since TS-waves are more stable in x G [xin,xout] than in x G [xin,xout], 
the latter observation may suggest a coupling between physical instabilities and the iterative 
approach for satisfaction of solution continuity at the interface as being responsible for the 
observed numerical instability. 

Finally, the most effective way found to eliminate the numerical instability of the type shown 
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in Figure 13 is to increase resolution to the levels used for the singular lid-driven cavity problem 
or the Poisson problems in the geometries with a corner singularity. Results have been obtained 
discretising space by means of two 0010 B-type subdomains in each of which 482 spectral col- 
location points have been used. The Dirichlet-Neumann algorithm discussed was used at the 
interfaces and no use of the buffer-domain technique has been made (i.e. \(x) = 1 in (4.5)). The 
convergence history, obtained with a modest value of u> = 10-4 may be found in Figure 15 and 
the spatial distribution of the solutions is shown in Figure 16. No traces of numerical instability 
may be found in neither the solution for ip itself nor in its streamwise derivative ipx = — v at the 
interface, while continuity of u naturally follows from that of ip and v; an analogous situation 
pertains for the flow vorticity (. The collapsing of the calculated solutions in both the 162 and 
the 482 calculations onto the Blasius profile is shown in Figure 17. 

In summary, it appears that a coupling between physical instabilities and the iterative algo- 
rithm for the satisfaction of continuity at interfaces is responsible for the observed numerical 
instability at modest resolutions. This phenomenon is absent in single-domain calculations, where 
less collocation points are in general necessary in order to obtain solutions of analogous quality 
and gives rise to the investigation of alternative schemes for the satisfaction of solution conti- 
nuity at the interfaces, for example Neumann-Neumann or Robin in combination with either 
Dirichlet or Neumann transmission interface conditions as an extension of the present work. In 
the context of the present simulations the most satisfactory remedy was found to be an increase 
of the number of collocation points to a level analogous to that at which satisfactory solutions 
were obtained in the lid-driven cavity, as far as the equations of fluid motion are concerned, and 
to that at which converged solutions of the Poisson equation in the grooved-channel and the 
backward-facing step geometry were obtained. 

(d)  Open-cavity steady laminar solutions 

The experience gained with the spectral multidomain scheme in the problems addressed is 
next utilised to obtain solutions in the open cavity. The geometry of the domain including some 
of the parameters of the problem is shown in Figure 18. The fluid is taken to be air, with a 
kinematic viscosity of v — 1.7 x 10-5 in dimensional SI units and flow is taken to be driven 
by a constant dimensional free-stream velocity ÜQO = 1 under zero streamwise pressure-gradient 
conditions. The control parameter for the solutions obtained is the flow Reynolds number, an 
increase of which may be interpreted as downstream shifting of the open cavity at the same 
free-stream velocity or increase of the latter with the cavity being kept at a fixed location. 
Other parameters on which the solution depends are the lengths XL and XR which determine 
the Reynolds number at the upstream lip of the cavity and at the outflow of the integration 
domain, as well as the depth D and length L using which the two cavity Reynolds numbers 
ReL — üL/is and Reo — uD/v may be defined. In line with the argumentation used for the 
Blasius flow with respect to subcriticality to TS instability we ensure that the Reynolds numbers 
of the flow at the inflow boundary and at the upstream lip of the open cavity is kept within 
the known bounds. The choice of the parameters L and D, on the other hand, has been shown 
experimentally to be crucial for the type of flow state to be expected, laminar, transitional or 
turbulent (Sinha et al. 1982). Accordingly, the values of both L and D as well as that of the 
outflow location £out = Xj„ + XL + L+XR must be restricted, such that steady laminar flow exits 
the integration domain. Without attempting to match their (different) conditions, we have used 
the works of Sinha et al. (1982) and Gatski and Grosch (1984) for some guidance with respect 
to the choice of XL, XR, L and D. 

The spectral multidomain algorithm used in the open cavity employs a domain decomposition 
analogous to that of § 3(b) although here four subdomains have been used to discretise space, 
two 0010 B-type, one 0111 D-type and one A-type subdomain as shown in Figure 2 (upper). 
The domain mapping in the wall-normal coordinate in the B-type subdomains is (4.3) used for 
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the calculation of the Blasius flow. We used either our algorithm, which does not distinguish 
between iteration for the nonlinearity and that for solution continuity across interfaces or the 
classic Dirichlet/Neumann approach which incorporates the latter within the former iteration. 
Convergence of the solutions in the present context has been ensured in a threefold manner. 
First, continuity of the solution across domain interfaces was enforced in an inner iteration of 
the Dirichlet-Neumann algorithm until the jump across interfaces was of the level of machine 
accuracy. Second, results of relative discrepancy below preset tolerances were obtained as the 
grid was refined; a typical value used was a relative change of less than 0.1% between two 
successive grid refinements. Third, the outer iteration for the nonlinearity was pursued until the 
relative changes in the solution were of the O(10-6). 

(i) SQUARE CAVITY SOLUTIONS 

Steady-state solutions have been obtained in the open cavity in the Reynolds number region 
examined, Re G [50,5000]. The spatial convergence of the solutions has been assessed by grid 
refinement using 82 to 322 collocation points in each subdomain. The iteration process converged 
quickly at all resolutions; the iteration history using 202 collocation points in each subdomain is 
shown in Figure 19. The fact that all solutions were obtained using u = 0.1 is a demonstration of 
the robustness of the multidomain algorithm proposed, using which solutions may be obtained 
in less than 103 iterations at the low Reynolds numbers and twice that number at the higher 
Re—values. Global and local convergence criteria were used; in Table 6 we present the maximum 
value of u at (x = xinf + xL + L/2, y = 0) where it may be seen that the relative discrepancy 
between the results at the two highest resolutions is less than 0.1%. The spatial distribution of 
the incompressible open-cavity results obtained is shown in terms of isolines in Figures 20-23. 
Worthy of mention in these figures are a number of facts. First, in all solutions obtained there 
are no signs of discontinuities at domain interfaces. Second, the outflow boundary conditions 
used for the Navier-Stokes solutions discussed so far perform equally well in the present problem, 
despite its strongly elliptic nature. This is the result of the re-establishment of attached lami- 
nar boundary-layer flow at the outflow boundary; these boundary conditions may not perform 
equally well in case separated flow reaches the outflow boundary as a result of further increase 
of the Reynolds number; this is one of the questions of academic and practical interest, which 
may be posed for further investigation in a possible extension of the present work. Third, the 
boundary-layer approximation used to obtain inflow data becomes progressively more applicable 
as the Reynolds number is increased, while at low Reynolds numbers the DNS-obtained result 
at the neighbourhood of the inflow boundary quickly departs from the boundary-layer solution 
imposed at inflow. Fourth, an examination of the flowfields obtained reveals that an increasingly 
large level of interaction between flow outside and that inside the cavity takes place as a result 
of an increase in the Reynolds number; at the same time the shear-layer emanating from the 
upstream lip of the cavity is strengthened, as may be visually appreciated in the vorticity results. 

In the steady solutions obtained no indication of the known from experiment oscillation of the 
flow between the upstream and the downstream vertical walls of the cavity has been observed. 
However, an interesting situation related to this phenomenon arose with a further increase of 
the Reynolds number to Re = 6000; the result may be found in Figure 24. Using the same 
resolutions as in the lower Reynolds number simulations we observed that upwards of 202 col- 
location points in each subdomain were necessary for converged steady-state solutions to be 
obtained. At lower resolutions the simulation became unstable, indicating that the number of 
discretisation points is too low to resolve the gradients in the flow. Interestingly, though, an ex- 
plosive instability of the algorithm occurred only at the lowest resolution used, 122, while when 
using 162 collocation points in each subdomain periodic non-physical solutions were obtained. 
The solution then appeared to oscillate between the upstream and downstream vertical walls 
of the cavity while every signal built with either local or global quantities appeared to pertain 
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to a limiting cycle. In the absence of the higher resolution results one could misinterpret this 
behaviour as the onset of physical unsteadiness in the cavity. We ensured that this observation 
is related to low resolution and is not an artifact of too-high w values by experimenting with the 
latter parameter. The results of Figure 24 were qualitatively repeated when u values half and 
an order-of-magnitude smaller than that used in Figure 24 were employed. Worse, by experi- 
menting with the value of w at a given resolution, 162, we were able to obtain solutions which 
(in a time-accurate framework) may be interpreted as bearing all the hallmarks of limiting-cycle 
behaviour. The iteration history obtained using u> = 0.01, in which the in-phase oscillations 
of the solution components are clearly visible, is shown in Figure 25. The altogether plausible 
result for the corresponding velocity components is shown in Figure 26; this bears little resem- 
blance to the true solution obtained using upwards of 202 collocation points per subdomain, 
also shown in this figure. Even more curiously, at the lower resolution of 82 collocation points in 
each subdomain, the iteration process converged quickly to a steady-state solution which may 
be discarded as unphysical only on the grounds of comparison with the high-resolution results. 
Summarising the results of our experimentations beyond Re = 6000 we note that, aside from 
the well-known need for grid-convergence studies in order for a numerically obtained solution 
to be established as physically relevant, the new experience gained during this part of the work 
is that low-resolution simulations may produce results which can be erroneously interpreted as 
being related to the known from experiment physical behaviour of the open cavity solution. In 
view of the different resolution capacity of spectral methods on one hand and finite-difference 
or finite-volume schemes on the other, the present observations may be relevant to simulations 
using the latter numerical methods and resolutions substantially higher than those presently 
employed. Caution is warranted in order to discern between physical behaviour and numerical 
artifacts in open cavity flow simulations. 

Increasing the Reynolds number further to Re = 7000 we were unable to obtain a converged 
steady-state solution when employing up to 322 collocation points in each subdomain, as shown 
in Figure 27. The iteration history signal appears to be nonlinear throughout the simulation. One 
of the iterates of the solution shortly before numerical instability destroys the simulation is shown 
in Figure 28. The results for the streamfunction and its derivatives seem plausible, although one 
notices the large extent of interaction between fluid outside and inside the cavity, as well as the 
strong gradient forming in the neighbourhood of the downstream corner of the cavity; the latter 
is an indication that further runs to must be performed at higher resolutions. Although it would 
be tempting to proclaim that we have identified the critical Reynolds number for amplification 
of two-dimensional (ß = 0) global linear instabilities (Theofilis 1999) the results at Re = 6000 
warrant caution and such a statement may only be made after simulations at higher resolutions 
(and associated smaller values of w, i.e. simulations which are altogether substantially more 
expensive than the one using 322 collocation points in each subdomain) have been performed. 
This forms one of the possible extensions of the present work, namely the identification through 
extensive grid-refinement study of the critical Reynolds number Recr)2£> for amplification of two- 
dimensional global linear instabilities. A further avenue which may be pursued in continuation of 
the present work is simulations of time-periodic states which are expected to set in past Recri2D 
as a consequence of neutrally-stable (ß = 0) global linear eigenmodes which interact nonlinearly 
with the steady laminar basic state. The objective of pursuing simulations at higher Reynolds 
numbers is to broaden the scope of the present work towards Reynolds numbers relevant to 
Air Force needs. Subsequent global linear instability analyses of both steady and time-periodic 
states will identify two different mechanisms both of which are of relevance to high-speed flow. 
From a technical point of view, the extension of the present work into recovery of time-periodic 
basic states may be pursued using a straightforward time-accurate extension of the algorithms 
validated herein. 
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(ii) RECTANGULAR CAVITY SOLUTIONS 

Next, we have turned our attention to open cavities in which L ^ D. We have considered a 
constant free-stream velocity ü = 1 and kept the locations of the inflow domain and the upstream 
lip of the cavity at the fixed positions xin = 0.5 and xin + xL = 0.5 + 205*, respectively, where 
8* is the flat-plate boundary layer thickness at inflow; the outflow boundary is placed at 505* 
past the downstream vertical wall of the cavity. Taking as reference the square cavity solution 
L = D = 105* wide cavity solutions have been obtained by taking D = 105* and L/D = 2(1)10 
while deep cavity solutions have been obtained using L = 105* and D/L = 2,3 and 4. In 
all simulations space was discretised using the same conformable subdomains as in the square 
cavity simulations, in which 20 collocation points resolved each spatial direction. An CJ = 0.1 
has sufficed for converged solutions to be obtained after a few hundreds of iterations at all 
parameters. 

Figure 29 shows the dependence of the maximum of the streamwise velocity component along 
the interface of the domains II and IV. This quantity reaches its minimum in the square cavity 
and depends in a nearly linear manner on the aspect ratio L/D as the latter increases. The 
physical explanation of this result is rather straightforward, pointing to the fact that increas- 
ingly more fluid from the free stream entrains into the cavity as L/D increases. This may be 
appreciated in the results of Figures 30-33, where the solutions for -0, u, v and C at L/D = 3(2)9 
are plotted. Our intention here is to highlight the qualitative features of the solutions obtained 
and hence we present a large number of equally spaced contours between zero and the maxima 
of each quantity as well as the same number of contours between the minima and zero of the 
respective quantities. The same results are plotted in Figure 34 on the same scale, so that the 
quantitative changes resulting from a change of the aspect ratio may be appreciated. At about 
L/D = 5 the single recirculation region inside the open cavity is divided in two large areas of 
recirculating flow attached to either of the upstream and downstream vertical cavity walls; as 
the aspect ratio of the cavity increases further the flow pattern in the neighbourhood of the 
upstream and downstream vertical walls of the open cavity increasingly resembles that of the 
union of two other interesting prototype flows, namely the backward- and forward-facing step 
flow. The latter may be better visualised in Figure 35 in which isolines of the steady laminar 
solution at L/D = 10 are presented. In order for the recirculation regions to be highlighted 
ten isolines of positive values between zero and the respective maxima as well as ten isolines 
of negative values between the respective minima and zero and the associated colourbars were 
generated for the respective flow quantities. At these parameters the attached laminar flow at 
the inflow boundary separates past the upstream lip of the cavity and reattaches at the lower 
wall of the cavity at x « Xin + XL + 1.25D before separating again shortly before the downstream 
vertical wall of the cavity is reached. Thereafter a laminar attached boundary layer develops up 
to the outflow boundary. Comparisons of the results obtained with established backward- and 
forward-facing step benchmark simulations is beyond the scope of the present investigation and 
will be reported separately in due course as yet another possible extension of the present work. 
From a numerical point of view, in line with the results of the Poisson equation obtained in 
§ 3 (c), it suffices here to state that the present wide cavity steady-state results demonstrate 
that the spectral multidomain algorithm presented herein is capable of solving for flow in both 
the backward and the forward-facing step geometry in a straightforward manner. 

Finally, we turn our attention to deep cavities and present in Figures 36-39 and 40, respectively, 
the qualitative and quantitative features of steady ip, u, v and £ solutions obtained at D/L = 
1(1)4. These may be discussed along both numerical and physical lines. From a numerical point 
of view, as in all open cavity solutions obtained so far, we have not noticed any evidence of 
numerically introduced discontinuity of the solution at subdomain interfaces. Briley's outflow 
boundary conditions neither introduce artificial boundary layers in the neighbourhood of the 
outflow boundary nor do they affect the fiowfield in the neighbourhood of the cavity. A comment 
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relevant to the wide cavity simulations also is that the quality of the solution is not affected in 
the context of the present spectral simulations when the aspect ratio of the minimal discrete cell 
increases. This is a problem which is of concern to finite-difference and finite-volume simulations, 
where the ratio of the minimal discretised lengths in the two spatial directions must be of 0(1). 
Here this aspect ratio is shown to take values from 0.25 to 10 inside the cavity without any 
visible influence on the quality of the solution. Furthermore, the pattern predicted by Burggraf 
(1966) on the basis of the lid-driven cavity, including its symmetries, is also present in our deep 
open-cavity numerical results; note that 11 orders of magnitude separate the maximum and 
the minimum values at which isolines of ( in the deepest cavity are drawn in Figures 36-39 
and 40. From a physical point of view we observe in the open cavity the formation of multiple 
recirculation zones of essentially Stokes flow (known as Moffat eddies) as the depth of the cavity 
increases. The strength of recirculation decreases exponentially as one progresses from y = 0 to 
y = — \D\ with most of the activity taking place in the neighbourhood of the interface between 
the cavity and the outer flow. From the point of view of a subsequent global linear instability 
analysis, owing to their small magnitude in comparison with the flow in the neighbourhood of 
the cavity lips, the details of the Moffat eddies' are not expected to influence the accuracy of the 
instability results to be obtained. Nevertheless, it is remarkable that a resolution of the flow with 
20 collocation points per spatial direction inside the cavity is capable of delivering this result. 
If finer resolution of the Moffat eddies is required, this may be straightforwardly obtained by 
refining the cavity resolution by subdividing it in additional subdomains, as indicated in Figure 
3. While it is certainly possible to pursue higher resolution simulations, we bear in mind the 
ultimate objective of the present work, which is recovery of as accurate as possible a basic 
flow on as small number as possible a number of discretisation points. The proposed spectral 
multidomain algorithm has been shown to satisfy this requirement. 

(iii) SOLUTIONS IN A FULL BAY MODEL 

Beyond delivering accurate results at modest resolutions, the multidomain algorithm proposed 
for the solution of the open cavity problem is well-suited to solve this problem beyond the 
idealised situation of an empty rectangular open cavity. As an aside to the main theme of the 
present report, we discuss the solution to a problem representative of the class of flows indicated 
in § 2 (a) in which an object is contained in the open cavity. A two-dimensional model of the 
domain of a full bay is shown in Figure 41. This domain is chosen as a demonstrator of the 
capabilities of the present spectral multidomain algorithm, without any pretension to model a 
specific cargo; it should be clear, though, that the limit of complexity of the geometry which may 
be tackled using our approach is set by efficiency aspects and the number of processors available 
to be devoted to the (clearly parallelisable) solution approach. All solutions which follow were 
obtained on a single-processor platform using the 24 subdomains indicated in Figure 41. 

From an algorithmic point of view, there is no conceptual addition in complexity by considering 
the domain shown in Figure 41. The nature of the boundary conditions necessary to close the 
problem in each subdomain is the same as that in the empty open cavity, namely an inflow 
boundary, a solid wall and a free-stream or outflow boundary. The compatibility conditions 
across domain interfaces are treated as part of the new iterative algorithm used for the open 
cavity solutions presented in the previous sections. The efficiency of our approach is indicated by 
the fact that solutions on 8 x 8,12 x 12,16 x 16 or 20 x 20 conformable grids in each subdomain 
could be obtained on single-processor platforms within reasonable computing times. A technical 
detail of interest is that if the number of discretisation points is kept the same in all subdomains 
which discretise space in this relatively complex geometry, the smallest grid spacing in the 
smallest in size subdomain imposes an unnecessarily small iteration parameter CJ (or time-step in 
a time-accurate framework) if standard Chebyshev Gauss-Lobatto (CGL) grids are used. Indeed, 
the value of u scales with 1/iV4, where N is the number of CGL points used in each spatial 

Contract No. F61775-99-WE090 



. Spectral multidomain for laminar flows in 2D open cavities 19 

direction; this limitation severely restricts the usefulness of a spectral method as resolution 
increases. A remedy is to redistribute the CGL points in a more equidistant manner compared 
with the (strongly stretched at the endpoints of the integration domain) CGL grid. There are 
several ways to achieve this target; here we have constructed a straightforward modification 
of the grid proposed by Kosloff and Tal-Ezer (1993). Specifically, we map the CGL points 

£ = cos ^, j = 0, • ■ ■, N onto 

,  XR-XL farcsm[(/3-l)g]       \ .     , 
V = XL + ö \ r-7z ^T- + 1 >, (4.b) 

2        I.  arcsm(l — p) J 

where XL and XR are the endpoints of the original domain, mapped on themselves. Appro- 
priate choices of the 0{N~2) parameter ß alleviate the l/N4 restriction for UJ to 1/iV; using 
u — 10-3 we have obtained converged results within O(104) iterations in what follows. The 
convergence history of a typical solution obtained with 8 collocation points per spatial direction 
and subdomain is shown in Figure 42. The large number of iterations shown is characteristic 
of the complexity of the problem solved. While the discrepancy between successive iterates be- 
comes lower than 0.02% after ~ 3 x 104 iterations, the solution relaxes to the converged result 
rather slowly. We attribute this finding to the relatively large fraction of subdomain boundaries 
on which an iteration is required over those on which physical boundary conditions are supplied. 
This fraction increases from 0.3 in the case of the subdomain discretisation used for the empty 
open cavity shown in Figure 2 (upper) to 0.8 in the spatial discretisation of Figure 41. 

From a physical point of view, the objective of this short departure from the main theme of 
our report has been to compare solutions in the open (empty) and the present model of a full-bay 
cavity. To this end, we chose the parameters shown in Table 7 which result in solutions to be 
compared (in the sense of size of the domain) with the L/D = 5 rectangular cavity results also 
presented in Figure 34. The streamfunction and its first derivatives are shown in Figures 43-45 
along the results of the equivalent-sized empty open cavity. In all results an equidistant number of 
contours between the respective maxima/minima and zero are provided. As expected, substantial 
differences in the solutions in the two configurations exist; the presence of a sizable object inside 
the cavity leads to the destruction of the zero-streamline which connects the upstream and 
downstream lips of the empty cavity and to the formation of strong shear layers inside the 
cavity, with new stagnation points being formed as a consequence of the chosen geometry. The 
extent to which fluid from the free-stream entrains into the open cavity may be seen in Figure 
43 where the regions of recirculating fluid under the object have been highlighted. 

The qualitative features of the results presented in Figures 43-45 have been found to be inde- 
pendent of resolution when using between 8 and 20 points per spatial direction and subdomain. 
Clearly, running the code on a parallel machine can refine the quantitative features of the solu- 
tions obtained; this is also beyond the scope of the present work. What we are interested in here 
is viewing these results within the framework of a global linear instability analysis. The conclu- 
sion which may be drawn is that the total resolution requirements take a global linear analysis 
of the full-bay basic flow model well beyond the reach of an eigenvalue problem approach. While 
it might still be possible to obtain reasonably well resolved global linear instability results in 
the empty open cavity using an eigenvalue problem approach in which the spatial discretisation 
is treated in a coupled manner, a time-accurate approach and decoupled calculation of spatial 
derivatives is essential for the global linear instability analysis of a full-bay model. The well- 
validated spectral multidomain algorithm proposed herein is one efficient potential candidate to 
be employed in this respect. 
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5.  The compressible equations of motion in two spatial dimensions 

(a)  Governing Equations 

We now turn our attention to the compressible equations of motion. In conservative formula- 
tion and two Cartesian spatial dimensions the nondimensional equations read 

dg | d¥c t dGc 

dt       dx        dy 

1   /9F. v  , dGv 

Re V dx 
+ 

dy 
(5.1) 

P ' 

Q = 
pu 
pv 
E _ 

) 

is the solution vector, 
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puv 
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_v{E + p) _ 

1 

are the convective and 
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TXy 
Tyy 

xy + VTyy + Qy . 

are the viscous fluxes, respectively. 

The total energy E is related with density p, temperature T and the Cartesian velocity 
components u and v in the x and y spatial directions, respectively, through 

E 
1 1      /     o 0\ 

7—1        2 

and an ideal gas law is assumed, for which 

P jM2 pT. 

The fluid is taken to be Newtonian, with the viscous stress tensor components given by 

c  du 
2p— + \ 

du     dv dv 
+ TT   'Tra = 2|U—+ A 

du     dv 

" dx  ' " \dx  ' dyj,,yy     -f~dy ' " \dx     dy 

while the components of the heat-flux vector are 

dT 

"r   r>     ] ) Txy — 7"i iyx 
'du     dv 

fX[dy- + dx- 

M 
Qy 

ß dT 

(7 - l)Afä,Pr dx ' ^      (7 - l)M2,Pr 3j/ 

The ratio of the heat capacities of the fluid under constant pressure cp and constant volume 
cv is denoted by 7; an 0(1) reference length L and free-stream reference quantities, namely 
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po,uo,Po = Pov-oiTo = UQ/CV, have been used for the nondimensionalisation of the equations; 
these have been combined into the Reynolds Re = pomL/po and Prandtl Pr = pocp/ko numbers 
of the flow with the latter taken to assume the constant value for air, Pr = 0.72. 

Stokes' hypothesis 

A = -\p (5.2) 

and Sutherland's law for viscosity 

, = ^i±|, (,3) 

with Cs — 110.4°K/To complete the system of equations to be solved in the framework of 
compressible direct numerical simulations. 

(6) Inflow boundary conditions 

In a manner analogous to the incompressible simulations presented in § 4 at the inflow bound- 
ary in the DNS the similarity profiles pertaining to compressible boundary-layer flow over a 
flat plate at given free-stream Reynolds and Mach numbers is imposed. The similarity solution 
is obtained using the classic Howarth-Dorodnitsyn transformation of the compressible laminar 
boundary layer equations which transforms the wall-normal coordinate y into a similarity coor- 
dinate n defined by 

y = 

where 

(5.4) 

y 

l» = ^andff = /P(T)rfT- (5'5) 

0 

The system of ordinary differential equations to be solved for the determination of the stream- 
wise velocity component u and temperature T is 

{xf")'+ff"=0, (5.6) 

(p^')' + fT + (7 - l)Mlx (/")2 = 0, (5.7) 

where /' = u/u^^x = (PM)/(POOMOO) and primes denote differentiation with respect to the 
similarity variable 77. The system (5.6-5.7) is solved subject to the boundary conditions 

/(0)=0, /'(0)=0, /'fo->oo) = 0, (5.8) 

T{r) -> 00) = 1, (5.9) 

alongside 

T(0)=Tw/Too (5.10) 

in the case of an isothermal wall, or 
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T'(0) = 0 (5.11) 

if an adiabatic wall is considered. Details of the shooting algorithm used and solutions of the 
compressible fiat-plate boundary layer obtained are outlined in the Appendix. 

Solutions of the compressible flat-plate boundary layer equations have been obtained using 
Pr = 0.72,T0 = 288.89°K and M^ = 0.01,0.5,1.0 and 1.5. Plots of the streamwise velocity 
component u, temperature T and their first two derivatives are shown in Figure 46. Both the 
viscous and the thermal boundary layers in the subsonic cases are barely distinguishable from 
the incompressible result. As a consequence, a (non-rational) global linear instability analysis 
performed on the basis of the incompressible model at subsonic Mach numbers and the consistent 
compressible global linear instability approach are expected to deliver qualitatively analogous 
results. Of interest is whether the presence of inflectional profiles in the compressible basic state 
at inflow introduces additional (global) linear instability modes, as the case is in the classic 
linear analyses. This forms one of the questions to be answered in future. 

(c) Numerical Methods 

After discretising the open cavity domain in the manner presented in §1, we employ in each 
subdomain a twofold extension of the techniques discussed by Theofilis (1998b) for the solution 
of the two-dimensional compressible Euler equations. Firstly, in the present problem two inhomo- 
geneous spatial directions are considered, as opposed to the one inhomogeneous and one periodic 
spatial direction of the latter work. Secondly, the algorithm is straightforwardly extended to in- 
corporate calculation of the viscous fluxes in the form presented above. Spatial derivatives are 
calculated using the same collocation algorithm discussed for the incompressible simulations. Al- 
ternative schemes based on compact finite-difference methods, which have reached a high level 
of sophistication (Visbal and Gaitonde 1998; Gaitonde and Visbal 1999), might also have been 
used; however, the issue of performance of the numerical scheme for the calculation of spatial 
derivatives was found to be highly platform-dependent (Theofilis 1998b) and, hence, we adhere 
to the spectral scheme which provides optimal accuracy at modest resolutions. 

By contrast to the incompressible simulations, here we concentrate on obtaining time-accurate 
compressible results using a low-storage fully explicit algorithm due to Wray (1986) for the time- 
integration of the equations of motion. The algorithm advances the solution vector Q according 
to 

ki = At   F(Qn,t„) 

k2 = At    P(Qn + |k1,tn + |At) 

k3 = Ai   F(Q" + ik1 + ^k2,t„ + ^At) 

Qn+1 = Qn + lfci + ^k2 + 3k3) (5 12) 

where superscript (n) indicates time-level, At is the time-step and F = —Fc — Gc + l/ReF^ + 
l/ReG„, as denned in (5.1). The attractive feature of the particular RK3 scheme is that it 
provides third-order accuracy in time, while it requires only two levels of storage. As such the 
RK3 represents a compromise between the more accurate but more expensive classic RK4 and 
the less accurate and equally expensive second-order accurate RK2 scheme. The severe time-step 
restrictions of explicit schemes in conjuction with spectral spatial discretisation are alleviated by 
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use of the mapping proposed by Kosloff and Tal-Ezer (1993) discussed in § 4 (d). Appropriate 
choice of the single mapping parameter results in near-uniform distribution of collocation points 
in the two spatial directions, which in turn permits time-steps of 0(1/N), N denoting the total 
number of collocation points in either the x— or the y—direction, as opposed to 0(1/NA) by 
which standard Chebyshev methods are restricted (Canuto et al. 1987). 

A straightforward Dirichlet-Neumann algorithm has been constructed to ensure C1—continuity 
of the solution at an interface V of two subdomains fii and £1%, according to which a solution Qi 
of (5.1) is obtained in fii which satisfies an arbitrary Dirichlet boundary condition and provides 
Neumann data for the solution Q2 of the governing equations in 02- The algorithm is 

(5.13) 

where F = Fc - j^F„ i 
updated according to 

A(m) = a,Q2
ra) + (1 - uS)ySm-x\ (5.14) 

with superscript (m) indicating iteration level and w being an 0(1) relaxation parameter. 
Note that the iteration produces C1—continuous values of the conservative quantities at each 
new time-level, from which the primitive variables may be extracted. 

(d) Boundary conditions for aeroacoustics calculations 

The objective currently is calculation of steady-state solutions in an open cavity in compress- 
ible flow. Aside from the issue of accuracy, which may be guaranteed by ensuring sufficiently 
high resolution, a novelty introduced by compressibility is the finite speed of propagation of 
pressure waves and the potential of confusion between acoustic signals generated by the flow 
itself and numerically generated reflections at the boundaries of the calculation domains. This 
issue is clearly demonstrated by the problem of advection of a vortical disturbance (Visbal and 
Gaitonde 1998) 

p=l, (5.15) 

u = U00--^(y- ye) exp (-r2/2) , (5.16) 

v = -^(x-xc)exp(-r2/2), (5.17) 

PC2 

P = Poc-^¥eW (-r
2) , (5.18) 

where (xc, yc) is the location around which vorticity is distributed initially, Uoo is the advection 
velocity, poo is the ambient pressure, r2 = (x-xc)2/R2 + (y-yc)

2/R2 and C and R are constants. 
Two sets of results were obtained using the compressible DNS techniques discussed; the results 
serve to illustrate the point regarding numerical reflections at finite boundaries. All simulations 
were performed in single domains using upwards of 50 collocation points per spatial direction 
and time-steps of O(10~2). 
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Firstly, we have chosen {xc,yc) = (0,0), (7oo = 0, C = 1,R = 1 and performed several sim- 
ulations initialised by (5.15) and (5.18) alone, setting u = v = 0 initially; the transient so- 
lution quickly settles to u and v predicted by (5.16-5.17) as seen in Figure 47, independently 
of Reynolds or Mach number values. While no distortions are to be seen on account of nu- 
merical dissipation, which is practically absent in the spectral scheme used, these transient 
solutions are destroyed by numerical instability as time in the simulation progresses; iden- 
tification of the origin of this numerical instability is our next concern. To this end we set 
{xcVc) = (—5,0), [Too = 1,C = 0.1, R = 0.75 and perform simulations at M = 0.4,0.8 and 
M — 1.2 at Re = 105, initialising the calculation using (5.15-5.18). The results at the high- 
est Mach number are presented in Figures 48 and 49. If attention is focussed on the velocity 
components alone (or vorticity, not presented here), one sees that the vortical structure is being 
advected by the flow at the imposed speed Uoo throughout the simulation. This result is repeated 
at all Mach numbers examined, the difference being that when all parameters in the respective 
simulations are kept identical as the Mach number decreases numerical instability sets in earlier 
in time. The same conclusion is to be drawn from the results of Figure 50 where the passage 
of the vortex is recorded at two fixed locations (x = xo,y = 0) with a;o = 0 and xo ~ 10, 
respectively. Starting at xc = —5 the vortex passes from these locations with no distortion, as 
seen clearly in the v—signal which is indistinguishable from the analytical solution at all times 
examined. 

However, the reason for the numerical instability is clearly to be seen in the signals of p, u 
and v as well as in the density and pressure isosurfaces presented in Figures 48 and 49. A cylin- 
drical pressure wave emanating from the vortical structure propagates in space, reflects on the 
boundary and returns to the integration domain. The reason is clearly the boundary conditions 
imposed at the artificially truncated boundaries, the reflecting character of which is responsible 
for the numerical instability initially and the destruction of the simulation eventually. One rem- 
edy is to place the boundaries far enough from the region of interest; however, this approach is 
not suitable for simulations in the open cavity, where long-time integrations will be necessary for 
a steady state solution to be obtained. A more elegant solution to this problem is the imposition 
of non-reflecting boundary conditions based on characteristic analyses (Thompson 1987; Poinsot 
and Lele 1992). While the issue of non-reflecting boundary conditions is the subject of current 
investigations (Rowley and Colonius 2000) it should be noted that in subsonic simulations some 
amount of reflection must be allowed in order for pressure to be able to adjust to the ambient 
value and implementation of perfectly non-reflecting boundary conditions is not advisable. Our 
current objective is the study of non-reflecting far-field boundary conditions in conjunction with 
spectral multidomain algorithms. Specifically, we are interested in the interaction of pressure 
waves with artificially created internal boundaries, such as the interfaces of the multidomain 
algorithm, and the potential generation of instabilities of numerical origin at such boundaries. 
Once this issue has been answered in a satisfactory manner we intend to proceed and obtain the 
compressible analoga of the open cavity solutions presented in § 4 (d); results will be presented 
in due course. 
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6.  Conclusions 

A spectral multidomain algorithm of the Dirichlet-Neumann class has been presented for the 
numerical solution of the Poisson equation and of the strearnfunction/vorticity-transport formu- 
lation of the system of equations governing incompressible fluid flow, when space is decomposable 
in rectangular subdomains. The novelty of the algorithm is that, in the case solutions to the 
steady equations of motion are sought, the iteration necessary for satisfaction of solution continu- 
ity across subdomain interfaces and that for the nonlinearity of the governing partial differential 
equations are combined and performed in a single step. This results in order-of-magnitude sav- 
ings compared with the standard approach in which these iterations are nested within each 
other. The issue of physical boundary conditions and numerical compatibility conditions has 
been discussed by reference to several benchmark solutions with which excellent agreement has 
been obtained. In geometries in which single-domain calculations may also be used it has been 
observed that higher resolution is necessary when using multidomain in order to achieve results 
of the same quality as those of the single-domain calculation. Relatively high resolutions are 
necessary for the solution of both the Poisson and the incompressible Navier-Stokes and con- 
tinuity equations when the domain contains geometric singularities, as the case is in the open 
cavity. Particularly revealing are the solutions of the Poisson equation in such domains, where 
estimates of the number of collocation points necessary in each subdomain in order for solu- 
tions to converge within prescribed tolerances may be obtained. This is especially helpful in the 
context of the global linear instability analyses, which form the objective of an extension of the 
present work, since the ability to increase the resolution of the steady laminar basic flow at will 
is absent in the framework of the instability analyses. 

Steady laminar incompressible solutions for low Reynolds number flow in arbitrary aspect- 
ratio open cavities have been obtained. The deep cavity limit at the Reynolds numbers examined 
was found to bear remarkable analogies with the well-known patterns of the lid-driven cavity 
flow (Burggraf 1966). Wide open cavity solutions, on the other hand, were found to correspond 
to the union of the well-known flow patterns in the backward- and forward-facing step geome- 
tries. The high resolution requirements suggested by the model problems examined earlier were 
confirmed in the open cavity simulations. One of the most interesting findings of the present 
work is the resonance-like behaviour of the flow at modest spatial resolutions. A clearly defined 
periodic solution pattern, which may well be confused with flow resonance between the upstream 
and the downstream vertical cavity walls, appeared as a consequence of modest resolutions and 
disappeared when resolution was increased further. The need for careful further numerical ex- 
perimentation in order for the critical Reynolds number i^d.st for onset of two-dimensional 
unsteadiness has thus been underlined. A further interesting result of the present work is the 
assessment of the differences of the flowfield set up in the empty as opposed to an open cavity 
containing an object. From the point of view of a subsequent global linear instability analysis, 
the resolution requirements in latter flow were found to be such that the instability analysis 
may only be performed in the context of an initial-boundary value problem. The resolution re- 
quirements of the empty open cavity, on the other hand, are such that a partial-derivative linear 
eigenvalue problem approach (Theofilis 1998a) may be employed. 

In order for compressible flow solutions in the open cavity to be obtained the issue of ap- 
propriate boundary and compatibility conditions must be addressed. The problem at the inflow 
boundary was solved by provision of the compressible flat-plate boundary-layer solution, while 
the potential pitfalls of naive application of the incompressible boundary conditions to the solu- 
tion of the boundary closure problem in the far-field and the downstream outflow boundaries of 
the computational domain in compressible simulations have been highlighted. It was shown that 
boundary conditions which do not prevent reflections at artificially introduced boundaries may 
not necessarily destroy the simulation but can definitely lead to misinterpretation of its results. 
We are currently working on this issue. 
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Our recent work on residuals in DNS, motivated by our desire to understand the origins of 
instability and three-dimensionalisation of two-dimensional steady flows, such as those in the 
open cavity, suggests that the existence of two-dimensional steady-state solutions in the open 
cavity is synonymous with stability of all two-dimensional global flow eigenmodes. This does 
not prevent three-dimensional modes being unstable. The extent to which the conclusions put 
forward in § 4 (d) carry weight in a three-dimensional environment will precisely be determined 
by the global instability analysis in which the entire steady (a:,y)-flowfields calculated in the 
framework of the present work may be used as variable coefficients for the partial-differential- 
equation-based complex nonsymmetric generalised eigenvalue problem. Estimates, based on the 
known global linear instability results in the lid-driven cavity, of the instability results in the 
open cavity may already be obtained indirectly by comparing the open and the lid-driven cavity 
basic states; this work is also in progress. 

The global linear instability analysis of the open cavity flow forms the ultimate objective of an 
extension of the present work; an intermediate step is the extension of the incompressible part 
of the present work to implement a time-accurate approach for the recovery of open-cavity solu- 
tions, an approach which is expected to be an order of magnitude more intensive computationally 
compared with the iterative algorithm proposed herein, on account of the iterations for satis- 
faction of solution continuity across subdomains being nested within the fractional time-steps 
of the time-integration procedure; however, the time-accurate algorithm is necessary in order 
for two-dimensional laminar time-periodic basic states to be obtained. Both incompressible and 
compressible time-periodic fields may form an alternative basic flow compared with the laminar 
steady-states obtained herein. Qualitatively different basic flows and a global linear instability 
analysis approach incorporating Floquet theory in the case of a time-periodic basic state are 
expected to result in the identification of different types of global linear instability mechanisms. 
The deliverable of this approach will be a critical Reynolds number Re2d,tp > -Re2d,st which 
will be closer to that relevant to Air Force needs in comparison with ife2d,st- Clearly, linear 
amplification of both types of global disturbances, stationary and time-periodic, is relevant to 
flight Reynolds numbers. 

Finally, the experience obtained in the present work suggests that the resolution necessary 
for adequate description of the steady laminar basic flow in the open cavity at high Reynolds 
numbers or the resolution of the flowfield set up by the presence of sizeable objects within 
the cavity calls for an extension of the partial-derivative-eigenvalue-problem-based global linear 
instability approach (Theofilis 1998a). In this respect, one of the present findings points at 
the fact that a solution approach in which all subdomains are solved in a coupled manner 
is impractical on account of the large total number of collocation points and the associated 
memory limitations. One way forward in this respect is implementation of an initial-boundary- 
value problem approach for global linear instability analysis which incorporates the validated 
spectral multidomain algorithm discussed in the present work. 
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Appendix A. 
A shooting algorithm for the compressible flat-plate boundary layer equations 

Key to the solution of the system (5.6-5.7) is the boundary-layer assumption of a constant 
pressure impressed upon the flow across the layer, 

iMl 
It follows that pT = 1 and 

X = T2 
I 1 + Cs 

(Al) 

(A 2) 

where Sutherland's viscosity law (5.3) has been used. Introduction of (A 2) into (5.6-5.7) 
permits solution of this system for the similarity variables /(r/) and T(r]) subject to boundary 
conditions (5.8-5.9) and either of (5.10) or (5.11). A straightforward shooting approach combined 
with Newton iteration until all boundary conditions are satisfied is employed to solve the system 
on a uniform 77—grid. The governing equations may be written in the form of as a system of 
ordinary differential equations 

h = g', (A3) 

where 

9i =   / hi =    92, 
92 =   / h2 =    93, 

93 =   /" h =   -^"9395 - ^9i93 
94 =   T hi =    95, 

95 =   T' /15 =    -^795-T9l05- 

(A4) 

The known boundary conditions are supplemented with estimates of the unknown values 
/(_>. 00),/"(0),/"(-»• oo),T'(-> 00) and either of T(0) or T'(0), depending on whether an 
isothermal or adiabatic problem is considered, respectively. The 77-grid encompasses a large 
number of uniformly-distributed points, such that subsequent interpolations of the similarity 
results onto the DNS grid may be performed without appreciable error being introduced. 
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Table 1. Validation of the multidomain algorithm for the Poisson equation in the rec 
flow; x(y) = xv. 

tangular duct steady laminar 

A = 3 
(Nx,Ny) 

8x8 
16 x 16 
32 x32 

iterations 
8 
6 
4 

CPU time (sec) 
0.14 (0.07) 
2.04 (0.73) 

73.21 (4.74) 

1p{xL,Q) 
0.901343 
0.901344 
0.901344 

1px(XL,0) 
0.152104 
0.152106 
0.152106 

lK0,0) 
0.981459 
0.981459 
0.981459 

1p{XR,0) 
0.967024 
0.967035 
0.967035 

1px{XR,0) 
-0.428399(-l) 
-0.428125(-1) 
-0.428125(-1) 

(Nx, Ny) 
8x8 

16 x 16 
32 x32 

iterations 
8 
6 
4 

CPU time (sec) 
0.14 (0.07) 
2.04 (0.73) 

73.18 (4.99) 

0.955314 
0.955321 
0.955321 

1px(XL,0) 
0.699181 (-1) 
0.699102(-1) 
0.699102(-1) 

A = 4 
^(0,0) 

0.996145 
0.996145 
0.996145 

I/>{XR,0) 
0.990301 
0.990328 
0.990328 

I/>X{XR,0) 

-0.140611(-1) 
-0.139337(-1) 
-0.139337(-1) 
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Table 2. Validation of the multidomain algorithm for the Poisson equation in the grooved channel. 

31 

8x8 16 x 16 32x32 64x64 

</>(-!,0.5) 
V*(-l,0.5) 
lM-1,0.5) 

2.6(-15) 
0.817566 
7.9(-14) 

-1.8(-13) 
0.816394 
-3.4(-ll) 

-1.2(-11) 
0.816215 
7.6(-10) 

7.0(-12) 
0.816187 
-7.5(-9) 

i/>(-0.75,'0.5) 
ipx (-0.75,0.5) 
^(-0.75,0.5) 

0.153385 
0.452766 
-0.028354 

0.153105 
0.451631 
-0.027761 

0.153059 
0.451444 
-0.027659 

0.153052 
0.451413 
-0.027643 

V>(-0.5,0.5) 
^(-0.5,0.5) 
Vv (-0.5,0.5) 

0.242893 
0.282003 
-0.116120 

0.242337 
0.281842 
-0.101810 

0.242249 
0.281784 
-0.097664 

0.242235 
0.281769 
-0.096486 

^(0,0.5) 
ipx (0,0.5) 
V» (0,0.5) 

0.317491 
8.9(-6) 

-0.239739 

0.316856 
8.9(-7) 

-0.238431 

0.316751 
1.2(-7) 

-0.238214 

0.316735 
1.9(-8) 

-0.238179 

i/>(0.5,0.5) 
^(0.5,0.5) 
^(0.5,0.5) 

0.242896 
-0.282063 
-0.076711 

0.242338 
-0.281845 
-0.090028 

0.242249 
-0.281784 
-0.094253 

0.242235 
-0.281769 
-0.095514 

■0(0.75,0.5) 
^(0.75,0.5) 
ipy (0.75,0.5) 

0.153388 
-0.452788 
-0.028361 

0.153105 
-0.451633 
-0.027762 

0.153059 
-0.451444 
-0.027660 

0.153052 
-0.451413 
-0.027643 

^(1,0.5) 
V.(l,0.5) 
^(1,0.5) 

0 
-0.817611 

0 

0 
-0.816396 

0 

0 
-0.816216 

0 

0 
-0.816187 

0 
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Table 3. Validation of the multidomain algorithm for the Poisson equation in the backward-facing step geometry 
(Black 1997). 

16 x 16        32 x 32 64 x 64 

V>(0,3TT/4)       -0.162463     -0.161707 -0.161585 
</>x(0,37r/4)     -0.279086     -0.278571 -0.278505 
V>j,(0,37r/4)     -0.222365     -0.234559 -0.237928 

y>(7r,0) 0.645964      0.645964 0.645964 
ipx(n,0) 1.2(-12)        1.6(-11) 1.5(-10) 
ipy(n,0) -1.719610     -1.719540 -1.719530 
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Table 4. Boundary conditions for single-domain calculations in the PPF. Dirichlet and Neumann data are 
denoted by (d) and (n) respectively. 

Boundary Type i> C 

N (d) 
(n) 

Eq. (4.1) Eq. (2.1) 

E (n) Ipxx ~ 0 S,a;a; = " 

S (d) 
(n) 

Eq. (4.1) Eq. (2.1) 

W (d)       Eq. (4.1)     Eq. (2.1) 
(n) Vx = 0 
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Table 5. Boundary conditions for multidomain calculations in the square lid-driven cavity. Dirichlet and 
Neumann data are denoted by (d) and (n) respectively. 

Domain 1011 Domain 1110 

Boundary          ip                ( Boundary         tp                C, 

N             ip = 0      Eq. (2.1) N             ip = 0      Eq. (2.1) 
Ipy = 1 i>v = 1 

E                (d)        Eq. (2.1) E             ip = 0      Eq. (2.1) 
ipx =0 

S             V = 0      Eq. (2.1) S             ip = 0      Eq. (2.1) 
Ipy = 0 Ipy =0 

W            V = 0      Eq. (2.1) W               (n)         Eq. (2.1) 
</>* =0 
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Table 6. Convergence of open-cavity solutions at different Reynolds numbers 

Re 
50 100 500 1000 5000 

Resolution 

8x8 0.091626 0.090597 0.079286 0.072195 0.139555 
12 x 12 0.087852 0.087006 0.077489 0.072145 0.146231 
16 x 16 0.085891 0.085086 0.076138 0.071182 0.147909 
20 x 20 0.084899 0.084103 0.075375 0.070629 0.146547 
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Table 7. Parameters for the solution of the full-bay open cavity model; (xo,{/5) = (0.5,0.121) and 5* is the 
boundary layer thickness at inflow. 

{xi - x0)/5* =20 1/4 = 0 
(x2 - xi)/S* = 17 (y4 - 2/3)/<T = 3 
(x3 - x2)/<5* =6 (i/3 - 3/2)/<T = 2 
(x4 - x3)/<5* =4 (y2 - j/i)/<5* = 2 
(x5 - x4)/<T = 5 (j/i - yo)/S* = 3 
(x6 - xs)/S* = 10 
(x7 — xe)/S" = 13 
(x8 - x7)/6" = 30 
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Table 8. Convergence of the transient solutions of the inviscid vortical flow at (x, y) = (0,0) and t = 0.5; 
u,v< KT14. 

fle = 102,M = 1.0 Be = 105,M = 0.6 #e = 105,M = 2.6 
p E p E p E 

25 x 25  0.605211  3.16587 0.633437  5.26767 0.547016  2.40012 
50 x 50  0.614062  3.19235 0.636089  5.28667 0.560949  2.34479 

100 x 100  0.614119  3.19272 0.636078  5.28658 0.561028  2.34295 

Contract No. F61775-99-WE090 



38 V. Theofilis 

B 

D 

Figure 1. The building blocks of the two-dimensional domains considered 
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Figure 2. Spatial decomposition of an empty (upper) and an open cavity containing a protrusion (lower) using 
the building blocks of Figure 1. 

Contract No. F61775-99-WE090 



40 V. Theofilis 

Figure 3. Example of spatial resolution refinement by decomposing an original (upper) into further subdomains 
(lower). 
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Figure 4. The streamfunction ip in flow in an aspect-ratio A = 3 rectangular duct (Tatsumi & Yoshimura, 1990) 
recovered using three subdomains with interfaces at XL = —0.5A and XR = 0.25A 
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Figure 5. The streamfunction ip in a grooved channel geometry recovered using five subdomains 
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Figure 6. The velocity component u in a grooved channel geometry recovered using five subdomains 
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Figure 7. The velocity component v in a grooved channel geometry recovered using five subdomains 
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Figure 8. Solution of X72ip = 1 subject to the boundary conditions of Black (1997). 
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Figure 9. Spectral multidomain solution of the plane channel laminar basic flow. Shown are the flow streamfunction 
ip (left), the streamwise velocity component v. (centre) and the wall-normal derivative of the flow vorticity £ (right) 
as functions of the number of iterations N and the relaxation parameter r at (x,y) = (0,0). r = 0(0.01) and 
r = 0(0.1) was used during the early and late iteration cycles, respectively. 
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Figure 10. The streamwise velocity component and the vorticity in plane Poiseuille flow solved using two 
domains whose interface is at x = 0. 
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Figure 11. The streamfunction and vorticity (upper) and the velocity components (lower) in the square lid-driven 
cavity at Re = 100. Solution obtained using 48 collocation points per spatial direction in each of two domains 
whose interface is at x = 0.5. 
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10 15 20 25 10 15 20 25 

V(X,:)(v x) u(x,:) 

Figure 12. Upper: Convergence history of ip (left) and £ (right) as function of the time-like variable r. Lower: 
Collapse of ip (left) and tpy (right) on the respective Blasius profiles. The imposed at inflow Blasius solutions are 
indicated by the solid lines; results obtained at the interface of the domains are shown by (o) and those at the 
outflow boundary are denoted by (□). 
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Figure 13. Instability of the numerical scheme in Blasius flow at low resolutions and high w values. 
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Figure 14. The streamfunction and vorticity (upper) and the velocity components (lower) in incompressible flow 
over a flat-plate. Solution obtained using 16 collocation points per spatial direction in each of the two subdomains 
connected at xc = 0.7. 

Contract No. F61775-99-WE090 



52 V. Theofilis 

1.5 

1 - 

0.5 

                                   1                      '                      1 

\        / 
\     / 
\ / 
V ■ 

/\ 
/  \ 

/      \ 
/         \ 

■"--     '             ^\ 

/ 
; ■ 

/ 
/ 

/ 
/ 

/   YxlO2 

/  ^x(-lO)2 

/ 
" / 

/ 
— *, 

1 
l 

10 15 

Figure 15. Iteration history of spectral multidomain Navier-Stokes solutions of a Blasius boundary layer, using 
482 collocation points in each of two subdomains connected at xc = 0.21. 
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Figure 16. The streamfunction and vorticity (upper) and the velocity components (lower) in incompressible flow 
over a flat-plate. Solution obtained using 48 collocation points per spatial direction in each of the two subdomains 
connected at xc = 0.21. 
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Figure 17. Collapse of ip (left) and i/>v (right) on the respective Blasius profiles. The imposed at inflow Blasius 
solutions are indicated by the solid lines; results obtained at the interface of the domains are shown by (o) • 
and those at the outflow boundary are denoted by (□). Upper: Calculation using 16 x 16 collocation points per 
subdomain. Lower: Calculation using 48 x 48 collocation points per subdoman. 
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Figure 18. Schematic representation of the geometry and definition of parameters in the open-cavity flow. 
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Figure 19. Iteration history of ma3t(ti) on the interface between subdomains II and IV at Re = 50,100, 500,1000 
and 5000. Solutions obtained on 202 grids. 
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Figure 20. Steady-state solutions at Re = 100 obtained with 202 collocation points in each subdomain. 
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Figure 21. Steady-state solutions at Re = 500 obtained with 202 collocation points in each subdomain. 
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Figure 22. Steady-state solutions at Re = 1000 obtained with 202 collocation points in each subdomain. 
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Figure 23. Steady-state solutions at Re = 5000 obtained with 202 collocation points in each subdomain. 
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Figure 24. Iteration history of max(ü) at the midpoint of the interface between subdomains II and IV at 
Re = 6000 and spatial resolutions comprising 122,162 and 202 collocation points in each subdomain. 
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Figure 25. Oscillatory open cavity solutions obtained on account of poor spatial resolution using 162 colloca- 
tion points in each subdomain. Shown are the values of ipx,ipy and £ at the midpoint of the interface between 
subdomains II and IV. 
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Figure 26. Upper: transient oscillatory solutions of the velocity components in the open cavity corresponding to 
the result of Figure 25. Lower: steady-state solutions of the same quantities obtained with 202 collocation points 
in each subdomain. 
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Figure 27. Iteration history of ip, ipx, ipy and £ at the midpoint of the interface between subdomains II and IV at 
Re = 7000 and a spatial resolution comprising 322 collocation points in each subdomain. 

Contract No. F61775-99-WE090 



Spectral multidomain for laminar flows in 2D open cavities 65 

0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.12 0.13 0.14 0.15 0.16 0.17 0.18 

0.16 0.17 0.1! 0.12 0.13 0.14 0.15 0.16 0.17 0.1! 

Figure 28. Transient solution shortly before numerical instability sets in at Re = 7000. 
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Figure 29. The dependence of the maximum value of tpy, taken at the midpoint of the interface between 
subdomains II and IV, in cavities of aspect ratio L/D. 
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Figure 30. Wide Open Cavities: Isolines of ip at L/D = 3, 5,7 and 9. 
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Figure 31. Wide Open Cavities: Isolines of u at L/D = 3,5,7 and 9. 
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Figure 32. Wide Open Cavities: Isolines of v at L/D — 3, 5,7 and 9. 
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Figure 33. Wide Open Cavities: Isolines of C at L/D = 3,5,7 and 9. 
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Figure 34. Steady-state rectangular open cavity solutions. Left to right column: ip,ipy,ipx,C. Upper to lower row: 
L/D = 1,3,5,7,9 with D = 105* and 8* the flat-plate boundary layer displacement thickness at the inflow 
boundary. A spatial discretisation comprising 202 collocation points in each subdomain was used. 
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Figure 35. Steady-state open cavity solutions at L/D = 10. The backward- and forward-facing step flow patterns 
are visible at the upstream and downstream vertical walls of the open cavity, respectively. 
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Figure 36. Deep Open Cavities: Isolines of ip at D/L = 1, 2,3 and 4. 
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Figure 37. Deep Open Cavities: Isolines of u at D/L — 1,2, 3 and 4. 
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Figure 38. Deep Open Cavities: Isolines of v at D/L = 1, 2,3 and 4. 
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Figure 39. Deep Open Cavities: Isolines of C at D/L — 1,2, 3 and 4. 
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Figure 40. Steady-state rectangular open cavity solutions. Left to right column: I/),I/'J,,I/'X,C- Upper to lower row: 
D/L = 1, 2,3,4 with D = 108* and <5* the flat-plate boundary layer displacement thickness at the inflow boundary. 
A spatial discretisation comprising 202 collocation points in each subdomain was used. 
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Figure 41. A model of an object contained in the open cavity and the resulting multidomain spatial discretisation 
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Figure 42. Local iteration history of the maxima of ip, C and the velocity components for flow over the configuration 
depicted in Figure 41 using the parameters of Table 7. Re = 295 is imposed at inflow and 202 collocation points 
are used in each of the 24 subdomain shown in Figure 41. 
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Figure 43. Streamfunction ip contours in the full bay model flow (upper) compared against those of flow in the 

equivalent-sized empty cavity (lower). 
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Figure 44. Velocity component u = i/>y contours in the full bay model flow (upper) compared against those of 
flow in the equivalent-sized empty cavity (lower). 
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Figure 45. Velocity component v = — xpx contours in the full bay model flow (upper) compared against those of 
flow in the equivalent-sized empty cavity (lower). 
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Figure 46. Compressible flat-plate boundary layer similarity solutions. Upper: Streamwise velocity component 

u = / and its first two derivatives; Lower: Temperature T distribution. Solid: Moo = 0.01, dotted: Moo = 0.5, 
dashed: Moo = 1.0, dash-dotted: Moo = 1-5. 
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Figure 47. Transient vortical solutions in compressible flow at t = 0.5 (Visbal and Gaitonde 1998). Upper to 
lower row, {Re,M) = (102,1), (105,0.6), (105, 2.6); left to right column, p,u,v,p. 
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Figure 48. Advected vortex in Re — 105,M = 1.2 viscous compressible flow (Visbal and Gaitonde 1998). Left to 
right column p,u,v,p\ upper to lower row, t = 0, 2.5, 5.0, 7.5,10.0 
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Figure 49. Advected vortex in Re = 105,M = 1.2 viscous compressible flow (Visbal and Gaitonde 1998). Left to 
right column p,u,v,p; upper to lower row, t = 12.5,15.0,17.5 
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Figure 50. Vortical advection problem; (p, u,v,p)T at (a;o,0) as function of time t. Dotted line xo = 0, dashed 
line xo « 10. 
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